Documentation

- Image Classification

Using automatic compression allows for easy model compression without a deep understanding of compression. Advanced compression offers higher flexibility in settings and may yield better compression results.

  • 'Compressed' Type: Automatic Compression
  • 'Compressed(Adv.)' Type: Advanced Compression

All of the original and compressed models can be downloaded easily on the Model Compressor Model Zoo.


PyTorch

ModelBest PracticeTypeDatasetAccuracy (%)FLOPs (M)Params (M)Latency (ms)Model Size (MB)
VGG16OriginalCIFAR10074.00629.7615.3071.6559.65
VGG16Google ColabCompressed-1CIFAR10072.22 (-1.78)431.84 (1.46x)5.16 (2.96x)24.52 (2.91x)20.22 (2.95x)
VGG16Google ColabCompressed-2CIFAR10068.01 (-5.99)213.06 (2.96x)1.25 (12.26x)11.34 (6.32x)4.93 (12.10x)
MobileNetV2OriginalCIFAR10074.29189.302.3546.268.98
MobileNetV2Google ColabCompressedCIFAR10073.68 (-0.61)119.09 (1.59x)0.82 (2.88x)24.50 (1.89x)3.38 (2.66x)
RepVGGOriginalCIFAR10076.441715.7012.94248.1050.33
RepVGGGoogle ColabCompressed-1CIFAR10074.92 (-1.52)1644.88 (1.04x)10.64 (1.22x)113.35 (2.19x)41.81 (1.20x)
RepVGGGoogle ColabCompressed-2CIFAR10069.84 (-4.60)721.77 (2.38x)2.95 (4.39x)51.69 (4.80x)11.71 (4.30x)
ViTOriginalCIFAR10094.4233725.7685.801396.53327.43
ViTGoogle ColabCompressedCIFAR10093.30 (-1.12)14804.95 (2.28x)37.78 (2.27x)737.11 (1.89x)144.32 (2.27x)
  • The model’s latency is measured on Raspberry Pi 4B (1.5GHz ARM Cortex).
  • Options: FP32, ONNX runtime

TensorFlow-Keras

ModelBest PracticeTypeDatasetAccuracy (%)FLOPs (M)Params (M)Latency (ms)Model Size (MB)
VGG19OriginalCIFAR-10072.28796.7920.09189.3178.69
VGG19Google ColabCompressedCIFAR-10071.13 (-1.15)132.20 (6.03x)1.17 (17.13x)12.85 (14.73x)4.98 (15.80x)
VGG19Compressed (Adv.)CIFAR-10071.14 (-1.14)100.09 (7.96x)0.66 (30.38x)4.5 (42.06x)5.68 (13.85x)
ResNet50OriginalCIFAR-10078.032596.0623.71450.1493.31
ResNet50Google ColabCompressedCIFAR-10076.92 (-1.11)613.43 (4.23x)2.64 (8.99x)130.39 (3.45x)9.83 (9.49x)
ResNet50Compressed (Adv.)CIFAR-10076.63 (-1.4)224.70 (11.55x)2.17 (10.91x)48.37 (9.31x)18.35 (5.09x)
MobileNet V1OriginalCIFAR-10066.6892.903.3135.6113.28
MobileNet V1Google ColabCompressedCIFAR-10066.32 (-0.36)26.09 (3.56x)0.53 (6.24x)3.66 (9.73x)2.38 (5.58x)
MobileNet V1Compressed (Adv.)CIFAR-10066.11 (-0.57)17.90 (5.19x)0.35 (9.35x)2.08 (17.12x)3.3 (4.02x)
  • The model’s latency is measured on Raspberry Pi 4B (1.5GHz ARM Cortex).
  • Options: FP32, TensorFlow Lite