Converter: Scope of support

Compatible model

The input layer of the uploaded model should be as follows.

  • Only single-input models are supported.
  • The four-dimensional array structure of images should be organized Batch, Number of Channels, Height, and Width.
  1. Batch size: The number of combined input datasets that the model processes simultaneously.
  2. Channel: 3 for RGB or BGR and 1 for Grayscale.
  3. Input size: In computer vision tasks, input size refers to the size of the input images.

Converting case






ONNX to TensorRT

Supported JetPack-ONNX version

Target Device

JetPack version

Input datatype

Batch size

Channel

Input size

Output datatype

NVIDIA Jetson Nano

4.6, 4.4.1

FP32

1~4 (Static), Dynamic

1~4

height, width

FP16

NVIDIA Jetson Xavier NX

5.0.2, 4.6

FP32

1~4 (Static), Dynamic

1~4

height, width

FP16

NVIDIA Jetson TX2

4.6

FP32

1~4 (Static), Dynamic

1~4

height, width

FP16

NVIDIA Jetson AGX Xavier

4.6

FP32

1~4 (Static), Dynamic

1~4

height, width

FP16

NVIDIA Jetson AGX Orin

5.0.1

FP32

1~4 (Static), Dynamic

1~4

height, width

FP16

NVIDIA Jetson Orin Nano

6.0

FP32

1~4 (Static), Dynamic

1~4

height, width

FP16

NVIDIA T4


FP32

1~4 (Static), Dynamic

1~4

height, width

FP16

ONNX to TFlite

Input datatype

Batch size

Channel

Input size

Output datatype

FP32

1~4 (Static), Dynamic

1~4

height, width

FP16 INT8

ONNX to OpenVino

Input datatypeBatch sizeChannelInput sizeOutput datatype
FP321~4 (Static), Dynamic1~4height, widthFP16

TensorFlow to TensorFlowLite

Input datatype

Batch size

Channel

Input size

Output datatype

FP32

1~4 (Static, Dynamic)

1~4

height, width

FP16 INT8