Converter: Scope of support
Compatible model
The input layer of the uploaded model should be as follows.
- Only single-input models are supported.
 - The four-dimensional array structure of images should be organized Batch, Number of Channels, Height, and Width.
 
- Batch size: The number of combined input datasets that the model processes simultaneously.
 - Channel: 3 for RGB or BGR and 1 for Grayscale.
 - Input size: In computer vision tasks, input size refers to the size of the input images.
 
Converting case
ONNX to TensorRT
Supported JetPack-ONNX version
Target Device  | JetPack version  | Input datatype  | Batch size  | Channel  | Input size  | Output datatype  | 
|---|---|---|---|---|---|---|
NVIDIA Jetson Nano  | 4.6, 4.4.1  | FP32  | 1~4 (Static), Dynamic  | 1~4  | height, width  | FP16  | 
NVIDIA Jetson Xavier NX  | 5.0.2, 4.6  | FP32  | 1~4 (Static), Dynamic  | 1~4  | height, width  | FP16  | 
NVIDIA Jetson TX2  | 4.6  | FP32  | 1~4 (Static), Dynamic  | 1~4  | height, width  | FP16  | 
NVIDIA Jetson AGX Xavier  | 4.6  | FP32  | 1~4 (Static), Dynamic  | 1~4  | height, width  | FP16  | 
NVIDIA Jetson AGX Orin  | 5.0.1  | FP32  | 1~4 (Static), Dynamic  | 1~4  | height, width  | FP16  | 
NVIDIA Jetson Orin Nano  | 6.0  | FP32  | 1~4 (Static), Dynamic  | 1~4  | height, width  | FP16  | 
NVIDIA T4  | FP32  | 1~4 (Static), Dynamic  | 1~4  | height, width  | FP16  | 
ONNX to TFlite
Input datatype  | Batch size  | Channel  | Input size  | Output datatype  | 
|---|---|---|---|---|
FP32  | 1~4 (Static), Dynamic  | 1~4  | height, width  | FP16 INT8  | 
ONNX to OpenVino
| Input datatype | Batch size | Channel | Input size | Output datatype | 
|---|---|---|---|---|
| FP32 | 1~4 (Static), Dynamic | 1~4 | height, width | FP16 | 
TensorFlow to TensorFlowLite
Input datatype  | Batch size  | Channel  | Input size  | Output datatype  | 
|---|---|---|---|---|
FP32  | 1~4 (Static, Dynamic)  | 1~4  | height, width  | FP16 INT8  | 
Updated 4 months ago
