HomeDocumentation
DocumentationLog In
Documentation

- Object Detection

Using automatic compression allows for easy model compression without a deep understanding of compression. Advanced compression offers higher flexibility in settings and may yield better compression results.

  • 'Compressed' Type: Automatic Compression
  • 'Compressed(Adv.)' Type: Advanced Compression

All of the original and compressed models can be downloaded easily on the Model Compressor Model Zoo.


PyTorch

ModelBest PracticeTypeDatasetmAP(0.5) (%)mAP(0.5:0.95)(%)FLOPs (M)Params (M)Latency (ms)Model Size (MB)
YOLOXOriginalCOCO68.049.7156006.2054.2112239.46207.37
YOLOXGoogle ColabCompressed-1COCO67.16 (-0.84)48.64 (-1.06)101804.06 (1.53x)19.96 (2.7x)8502.72 (1.44x)76.61 (2.7x)
YOLOXGoogle ColabCompressed-2COCO61.43 (-6.57)43.23 (-5.47)38607.03 (4.04x)4.93 (11.0x)4235.37 (2.89x)19.17 (10.80x)
  • The model’s latency is measured on Raspberry Pi 4B (1.5GHz ARM Cortex).
  • Options: FP32, ONNX runtime

TensorFlow-Keras

ModelBest PracticeTypeDatasetmAP(0.5) (%)mAP(0.5:0.95)(%)FLOPs (M)Params (M)Latency (ms)Model Size (MB)
YOLOv4OriginalPASCAL VOC82.22-61871.8265.3264318.70262.90
YOLOv4Google ColabCompressed-1PASCAL VOC87.23 (+5.01)-11459.69 (5.4x)10.59 (6.17x)28651.70 (2.16x)44.12 (5.96x)
YOLOv4Google ColabCompressed-2PASCAL VOC87.91 (+5.69)-14442.96 (4.28x)10.71 (6.1x)28976.40 (2.14x)44.36 (5.93x)
  • YOLOv4 model with EfficientNet B1 based backbone.
  • The model’s latency is measured on Raspberry Pi 4B (1.5GHz ARM Cortex).
  • Options: FP32, TFLite