- Object Detection
Using automatic compression allows for easy model compression without a deep understanding of compression. Advanced compression offers higher flexibility in settings and may yield better compression results.
- 'Compressed' Type: Automatic Compression
- 'Compressed(Adv.)' Type: Advanced Compression
All of the original and compressed models can be downloaded easily on the Model Compressor Model Zoo.
PyTorch
{
"data": {
"h-0": "Model",
"h-1": "Best Practice",
"h-2": "Type",
"h-3": "Dataset",
"h-4": "mAP(0.5) (%)",
"h-5": "mAP(0.5:0.95)(%)",
"h-6": "FLOPs (M)",
"h-7": "Params (M)",
"h-8": "Latency (ms)",
"h-9": "Model Size (MB)",
"0-0": "[YOLOX](https://github.com/Megvii-BaseDetection/YOLOX)",
"0-1": "",
"0-2": "Original",
"0-3": "COCO",
"0-4": "68.0",
"0-5": "49.7",
"0-6": "156006.20",
"0-7": "54.21",
"0-8": "12239.46",
"0-9": "207.37",
"1-0": "YOLOX",
"1-1": "[Google Colab](https://colab.research.google.com/github/Nota-NetsPresso/NetsPresso-CompressionToolkit-ModelZoo/blob/main/best_practices/object_detection/torch/yolox_coco/YOLOX.ipynb)",
"1-2": "Compressed-1",
"1-3": "COCO",
"1-4": "67.16 (-0.84)",
"1-5": "48.64 (-1.06)",
"1-6": "101804.06 (1.53x)",
"1-7": "19.96 (2.7x)",
"1-8": "8502.72 (1.44x)",
"1-9": "76.61 (2.7x)",
"2-0": "YOLOX",
"2-1": "[Google Colab](https://colab.research.google.com/github/Nota-NetsPresso/NetsPresso-CompressionToolkit-ModelZoo/blob/main/best_practices/object_detection/torch/yolox_coco/YOLOX.ipynb)",
"2-2": "Compressed-2",
"2-3": "COCO",
"2-4": "61.43 (-6.57)",
"2-5": "43.23 (-5.47)",
"2-6": "38607.03 (4.04x)",
"2-7": "4.93 (11.0x)",
"2-8": "4235.37 (2.89x)",
"2-9": "19.17 (10.80x)",
"3-0": "YOLOv7",
"3-1": "",
"3-2": "Original",
"3-3": "PASCAL VOC",
"3-4": "89.6",
"3-5": "71.3",
"3-6": "104739.64",
"3-7": "37.27",
"3-8": "5464.59",
"3-9": "146.33",
"4-0": "YOLOv7",
"4-1": "[Google Colab](https://colab.research.google.com/github/Nota-NetsPresso/NetsPresso-CompressionToolkit-ModelZoo/blob/main/best_practices/object_detection/torch/yolov7_voc/YOLOv7.ipynb)",
"4-2": "Compressed-1",
"4-3": "PASCAL VOC",
"4-4": "88.4 \n(-1.2)",
"4-5": "69.6 \n(-1.7)",
"4-6": "77859.81 \n(1.35x)",
"4-7": "17.12 \n(2.18x)",
"4-8": "3855.95 \n(1.42x)",
"4-9": "67.45 \n(2.00x)",
"5-0": "YOLOv7",
"5-1": "[Google Colab](https://colab.research.google.com/github/Nota-NetsPresso/NetsPresso-CompressionToolkit-ModelZoo/blob/main/best_practices/object_detection/torch/yolov7_voc/YOLOv7.ipynb)",
"5-2": "Compressed-2",
"5-3": "PASCAL VOC",
"5-4": "85.2 \n(-4.4)",
"5-5": "63.6 \n(-7.7)",
"5-6": "21878.87 \n(4.79x)",
"5-7": "2.55 \n(14.60x)",
"5-8": "2041.65 \n(2.68x)",
"5-9": "10.61 \n(13.79x)"
},
"cols": 10,
"rows": 6,
"align": [
"left",
"left",
"left",
"left",
"left",
"left",
"left",
"left",
"left",
"left"
]
}
- The model’s latency is measured on Raspberry Pi 4B (1.5GHz ARM Cortex).
- Options: FP32, ONNX runtime
TensorFlow-Keras
Model | Best Practice | Type | Dataset | mAP(0.5) (%) | mAP(0.5:0.95)(%) | FLOPs (M) | Params (M) | Latency (ms) | Model Size (MB) |
---|---|---|---|---|---|---|---|---|---|
YOLOv4 | Original | PASCAL VOC | 82.22 | - | 61871.82 | 65.32 | 64318.70 | 262.90 | |
YOLOv4 | Google Colab | Compressed-1 | PASCAL VOC | 87.23 (+5.01) | - | 11459.69 (5.4x) | 10.59 (6.17x) | 28651.70 (2.16x) | 44.12 (5.96x) |
YOLOv4 | Google Colab | Compressed-2 | PASCAL VOC | 87.91 (+5.69) | - | 14442.96 (4.28x) | 10.71 (6.1x) | 28976.40 (2.14x) | 44.36 (5.93x) |
- YOLOv4 model with EfficientNet B1 based backbone.
- The model’s latency is measured on Raspberry Pi 4B (1.5GHz ARM Cortex).
- Options: FP32, TFLite
Updated 19 days ago