How to Use
NetsPresso Benchmarker can be used through two methods: PyNetsPresso and LaunchX.
PyNetsPresso
For first-time use or to obtain detailed information about PyNetsPresso, please visit https://github.com/Nota-NetsPresso/PyNetsPresso.
from netspresso.enums import DeviceName, SoftwareVersion
# 1. Declare benchmarker
benchmarker = netspresso.benchmarker_v2()
# 2. Run benchmark
benchmark_result = benchmarker.benchmark_model(
input_model_path="./outputs/converted/TENSORRT_JETSON_AGX_ORIN_JETPACK_5_0_1/TENSORRT_JETSON_AGX_ORIN_JETPACK_5_0_1.trt",
target_device_name=DeviceName.JETSON_AGX_ORIN,
target_software_version=SoftwareVersion.JETPACK_5_0_1,
)
print(f"model inference latency: {benchmark_result.benchmark_result.latency} ms")
print(f"model gpu memory footprint: {benchmark_result.benchmark_result.memory_footprint_gpu} MB")
print(f"model cpu memory footprint: {benchmark_result.benchmark_result.memory_footprint_cpu} MB")
LaunchX
To use LaunchX, please visit https://launchx.netspresso.ai/main.
- Click on Benchmark in the top menu bar.
- Upload your AI model.
- Select the desired device and click the Benchmark button.
Updated 3 months ago